3.498 \(\int \frac{\sec ^4(c+d x)}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=164 \[ \frac{\left (2 a^2-b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right )}+\frac{2 a^2 \left (2 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^3 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac{2 a \tanh ^{-1}(\sin (c+d x))}{b^3 d} \]

[Out]

(-2*a*ArcTanh[Sin[c + d*x]])/(b^3*d) + (2*a^2*(2*a^2 - 3*b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a +
b]])/((a - b)^(3/2)*b^3*(a + b)^(3/2)*d) + ((2*a^2 - b^2)*Tan[c + d*x])/(b^2*(a^2 - b^2)*d) - (a^2*Sec[c + d*x
]*Tan[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.346423, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {3845, 4082, 3998, 3770, 3831, 2659, 208} \[ \frac{\left (2 a^2-b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right )}+\frac{2 a^2 \left (2 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^3 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac{2 a \tanh ^{-1}(\sin (c+d x))}{b^3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/(a + b*Sec[c + d*x])^2,x]

[Out]

(-2*a*ArcTanh[Sin[c + d*x]])/(b^3*d) + (2*a^2*(2*a^2 - 3*b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a +
b]])/((a - b)^(3/2)*b^3*(a + b)^(3/2)*d) + ((2*a^2 - b^2)*Tan[c + d*x])/(b^2*(a^2 - b^2)*d) - (a^2*Sec[c + d*x
]*Tan[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

Rule 3845

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(a^2*
d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3))/(b*f*(m + 1)*(a^2 - b^2)), x] + Dist[d
^3/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*b*(
m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && N
eQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))

Rule 4082

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m
+ 2)), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*B*
(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3998

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x
_Symbol] :> Dist[B/b, Int[Csc[e + f*x], x], x] + Dist[(A*b - a*B)/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^4(c+d x)}{(a+b \sec (c+d x))^2} \, dx &=-\frac{a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\int \frac{\sec (c+d x) \left (a^2-a b \sec (c+d x)-\left (2 a^2-b^2\right ) \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx}{b \left (a^2-b^2\right )}\\ &=\frac{\left (2 a^2-b^2\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d}-\frac{a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\int \frac{\sec (c+d x) \left (a^2 b+2 a \left (a^2-b^2\right ) \sec (c+d x)\right )}{a+b \sec (c+d x)} \, dx}{b^2 \left (a^2-b^2\right )}\\ &=\frac{\left (2 a^2-b^2\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d}-\frac{a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{(2 a) \int \sec (c+d x) \, dx}{b^3}+\frac{\left (a^2 \left (2 a^2-3 b^2\right )\right ) \int \frac{\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{b^3 \left (a^2-b^2\right )}\\ &=-\frac{2 a \tanh ^{-1}(\sin (c+d x))}{b^3 d}+\frac{\left (2 a^2-b^2\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d}-\frac{a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac{\left (a^2 \left (2 a^2-3 b^2\right )\right ) \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{b^4 \left (a^2-b^2\right )}\\ &=-\frac{2 a \tanh ^{-1}(\sin (c+d x))}{b^3 d}+\frac{\left (2 a^2-b^2\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d}-\frac{a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac{\left (2 a^2 \left (2 a^2-3 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^4 \left (a^2-b^2\right ) d}\\ &=-\frac{2 a \tanh ^{-1}(\sin (c+d x))}{b^3 d}+\frac{2 a^2 \left (2 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{3/2} b^3 (a+b)^{3/2} d}+\frac{\left (2 a^2-b^2\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d}-\frac{a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}\\ \end{align*}

Mathematica [A]  time = 1.41855, size = 162, normalized size = 0.99 \[ \frac{-\frac{2 a^2 \left (2 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{3/2}}+\frac{a^3 b \sin (c+d x)}{(a-b) (a+b) (a \cos (c+d x)+b)}+2 a \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-2 a \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+b \tan (c+d x)}{b^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4/(a + b*Sec[c + d*x])^2,x]

[Out]

((-2*a^2*(2*a^2 - 3*b^2)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2 - b^2)^(3/2) + 2*a*Log[Cos
[(c + d*x)/2] - Sin[(c + d*x)/2]] - 2*a*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (a^3*b*Sin[c + d*x])/((a -
b)*(a + b)*(b + a*Cos[c + d*x])) + b*Tan[c + d*x])/(b^3*d)

________________________________________________________________________________________

Maple [A]  time = 0.058, size = 275, normalized size = 1.7 \begin{align*} -2\,{\frac{{a}^{3}\tan \left ( 1/2\,dx+c/2 \right ) }{d{b}^{2} \left ({a}^{2}-{b}^{2} \right ) \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b-a-b \right ) }}+4\,{\frac{{a}^{4}}{d{b}^{3} \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-6\,{\frac{{a}^{2}}{db \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-{\frac{1}{d{b}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-2\,{\frac{a\ln \left ( \tan \left ( 1/2\,dx+c/2 \right ) +1 \right ) }{d{b}^{3}}}+2\,{\frac{a\ln \left ( \tan \left ( 1/2\,dx+c/2 \right ) -1 \right ) }{d{b}^{3}}}-{\frac{1}{d{b}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a+b*sec(d*x+c))^2,x)

[Out]

-2/d*a^3/b^2/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)+4/d*a^4/b^3/(a+b
)/(a-b)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-6/d*a^2/b/(a+b)/(a-b)/((a+b)
*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-1/d/b^2/(tan(1/2*d*x+1/2*c)+1)-2/d*a/b^3*l
n(tan(1/2*d*x+1/2*c)+1)+2/d*a/b^3*ln(tan(1/2*d*x+1/2*c)-1)-1/d/b^2/(tan(1/2*d*x+1/2*c)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 4.21063, size = 1704, normalized size = 10.39 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(((2*a^5 - 3*a^3*b^2)*cos(d*x + c)^2 + (2*a^4*b - 3*a^2*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos
(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/
(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - 2*((a^6 - 2*a^4*b^2 + a^2*b^4)*cos(d*x + c)^2 + (a^5*b - 2*
a^3*b^3 + a*b^5)*cos(d*x + c))*log(sin(d*x + c) + 1) + 2*((a^6 - 2*a^4*b^2 + a^2*b^4)*cos(d*x + c)^2 + (a^5*b
- 2*a^3*b^3 + a*b^5)*cos(d*x + c))*log(-sin(d*x + c) + 1) + 2*(a^4*b^2 - 2*a^2*b^4 + b^6 + (2*a^5*b - 3*a^3*b^
3 + a*b^5)*cos(d*x + c))*sin(d*x + c))/((a^5*b^3 - 2*a^3*b^5 + a*b^7)*d*cos(d*x + c)^2 + (a^4*b^4 - 2*a^2*b^6
+ b^8)*d*cos(d*x + c)), (((2*a^5 - 3*a^3*b^2)*cos(d*x + c)^2 + (2*a^4*b - 3*a^2*b^3)*cos(d*x + c))*sqrt(-a^2 +
 b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) - ((a^6 - 2*a^4*b^2 + a^2*b^4)
*cos(d*x + c)^2 + (a^5*b - 2*a^3*b^3 + a*b^5)*cos(d*x + c))*log(sin(d*x + c) + 1) + ((a^6 - 2*a^4*b^2 + a^2*b^
4)*cos(d*x + c)^2 + (a^5*b - 2*a^3*b^3 + a*b^5)*cos(d*x + c))*log(-sin(d*x + c) + 1) + (a^4*b^2 - 2*a^2*b^4 +
b^6 + (2*a^5*b - 3*a^3*b^3 + a*b^5)*cos(d*x + c))*sin(d*x + c))/((a^5*b^3 - 2*a^3*b^5 + a*b^7)*d*cos(d*x + c)^
2 + (a^4*b^4 - 2*a^2*b^6 + b^8)*d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{4}{\left (c + d x \right )}}{\left (a + b \sec{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a+b*sec(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)**4/(a + b*sec(c + d*x))**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.32944, size = 447, normalized size = 2.73 \begin{align*} \frac{2 \,{\left (\frac{{\left (2 \, a^{4} - 3 \, a^{2} b^{2}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{2} b^{3} - b^{5}\right )} \sqrt{-a^{2} + b^{2}}} - \frac{2 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 2 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a + b\right )}{\left (a^{2} b^{2} - b^{4}\right )}} - \frac{a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{b^{3}} + \frac{a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{b^{3}}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

2*((2*a^4 - 3*a^2*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b
*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/((a^2*b^3 - b^5)*sqrt(-a^2 + b^2)) - (2*a^3*tan(1/2*d*x + 1/2*c)^3 -
 a^2*b*tan(1/2*d*x + 1/2*c)^3 - a*b^2*tan(1/2*d*x + 1/2*c)^3 + b^3*tan(1/2*d*x + 1/2*c)^3 - 2*a^3*tan(1/2*d*x
+ 1/2*c) - a^2*b*tan(1/2*d*x + 1/2*c) + a*b^2*tan(1/2*d*x + 1/2*c) + b^3*tan(1/2*d*x + 1/2*c))/((a*tan(1/2*d*x
 + 1/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 - 2*a*tan(1/2*d*x + 1/2*c)^2 + a + b)*(a^2*b^2 - b^4)) - a*log(abs(tan(
1/2*d*x + 1/2*c) + 1))/b^3 + a*log(abs(tan(1/2*d*x + 1/2*c) - 1))/b^3)/d